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The in situ detection of methane at Gale crater by the SAM instrument suite on the NASA MSL Curiosity rover has garnered significant attention because of the implications for the potential of
indigenous Martian organisms [1]. In the absence of a yet-to-be-confirmed rapid destruction mechanism, the photochemical lifetime of methane is on the order of several centuries. This is much
longer than the atmospheric mixing time scale), and thus the gas should tend to be well mixed except when near a source or shortly after an episodic release. The observed spike of 7.2 ppbv from
the background of <1 ppbv, and then the return to the putative background level in 47 sols is, therefore, curious. The Mars Regional Atmospheric Modeling System (MRAMS) [2] was used to study
the transport and mixing of methane from specified source locations using tracers, and to investigate whether methane releases inside or outside of Gale crater are consistent with SAM
observations.
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Punctual methane release scenarios

The fraction of a given tracer compared to the total tracers over time is studied. By comparing the fraction of other tracers at the same location, the amount of mixing from different air masses can be determined.
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Gdle Ls90 Tracer1 Grig4 225  t1 = 0225 LMST  Gdle Ls270 Tracer! Grid4 225 This scenario was configured as the CH, release inside Gale scenario but placing tracer #1 outside Gale to the NW (roughly
upwind) with a medium size area (~6,400km?) emission. Results show that only 12 hours after release, the CH, that makes it to
the MSL location is diluted by six orders of magnitude from the initial release concentration regardless of the season. Although
the air in the crater is being rapidly replaced by outside air, there is a large amount of mixing and dispersion of the source air. To
achieve a value of 1 ppbv, a release of CH, on the order of parts per thousand would be required, which is likely unreasonable.

Punctual methane release conclusions

Duration of CH4 peak detected by SAM is 100 sols (assuming no high frequency variations). So then the model simulations
indicate that there must be a steady-state release inside the crater to counteract atmospheric mixing, because the timescales of
Sdle Ls90 Trocer! Grige 825 t2 = 0825 LMST  Gae o270 Tracer! Grise 825 mixing in the crater is ~1 sol during all seasons, which is much faster than previously estimated [4, 5].
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Mumma et al. 2009 detection areas in order to study the impact of the different release sizes.

Steady-state methane release conclusions

* Predicted methane abundances of a steady-state source vary by an order of magnitude over a diurnal cycle so the local time of sample ingest may strongly impact methane abundance measurements.

* It is difficult to reconcile the SAM measurements with the transport and mixing predicted by MRAMS.

* The only plausible scenario is an intermittent local release close to the rover with the restriction that such releases must be globally rare or there must be a unknown rapid methane destruction mechanism.

* But, if we multiply flux, increase release area or move it closer to rover (or all of previous), we would get methane values that SAM should be capable to detect doesn’t matter where it comes from.

* SW release at Ls90 and NW release at Ls270 outside Gale are the higher values due to global circulation.

* Ls90 (SAM’s high-CH4 abundance period) seems to have higher methane values than Ls270. Release inside or close to Gale show very localized methane in contrast with Mumma et al. 2009 detection.

*In the mimicking Mumma release area scenario, CH4 is building up around MSL just 3 sols after being released >3,000 km away! With a smaller release area (just B2 area) we get 30 times lower CH4 levels at MSL

* Although Ls155 is the season of the peak methane observation by Mumma, the highest CH4 value in our experiment is reached in Ls270 (one order of magnitude higher than Ls155).

* The circulation in and around Gale Crater is extremely complex and varies seasonally. The circulation is strongly 3-D, not just 2-D, and any scenario describing the transport of CH4 must recognize this dimensionality
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